Dynamic regulation of β1 subunit trafficking controls vascular contractility.

نویسندگان

  • M Dennis Leo
  • John P Bannister
  • Damodaran Narayanan
  • Anitha Nair
  • Jordan E Grubbs
  • Kyle S Gabrick
  • Frederick A Boop
  • Jonathan H Jaggar
چکیده

Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trafficking of BK channel subunits controls arterial contractility

Plasma membrane ion channels modulate the physiological functions of virtually all cell types, including vascular smooth muscle cells (myocytes) [1]. Many ion channels are composed of both pore-forming and auxiliary subunits, with the conventional view that these proteins coassemble intracellularly prior to anterograde surface trafficking of the multi-protein complex. Recent work in our laborat...

متن کامل

Distinct domains of the β1-subunit cytosolic N terminus control surface expression and functional properties of large-conductance calcium-activated potassium (BK) channels

The properties and function of large-conductance calcium- and voltage-activated potassium (BK) channels are modified by the tissue-specific expression of regulatory β1-subunits. Although the short cytosolic N-terminal domain of the β1-subunit is important for controlling both BK channel trafficking and function, whether the same, or different, regions of the N terminus control these distinct pr...

متن کامل

Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis.

Plexins and semaphorins comprise a large family of receptor-ligand pairs controlling cell guidance in nervous, immune, and vascular systems. How plexin regulation of neurite outgrowth, lymphoid trafficking, and vascular endothelial cell branching is linked to integrin function, central to most directed movement, remains unclear. Here we show that on developing thymocytes, plexinD1 controls surf...

متن کامل

Endothelin-1 Stimulates Vasoconstriction Through Rab11A Serine 177 Phosphorylation.

RATIONALE Large-conductance calcium-activated potassium channels (BK) are composed of pore-forming BKα and auxiliary β1 subunits in arterial smooth muscle cells (myocytes). Vasoconstrictors, including endothelin-1 (ET-1), inhibit myocyte BK channels, leading to contraction, but mechanisms involved are unclear. Recent evidence indicates that BKα is primarily plasma membrane localized, whereas th...

متن کامل

Western blot analysis of BK channel β1‐subunit expression should be interpreted cautiously when using commercially available antibodies

Large conductance Ca(2+)-activated K(+) (BK) channels consist of pore-forming α- and accessory β-subunits. There are four β-subunit subtypes (β1-β4), BK β1-subunit is specific for smooth muscle cells (SMC). Reduced BK β1-subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1-subunit reduces channel activity and increases SMC cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 6  شماره 

صفحات  -

تاریخ انتشار 2014